High Performance Oxide-Dispersion-Strengthened Tubes for Production of Ethylene and Other Industrial Chemicals

Marvin McKimpson

Michigan Technological University

Houghton, MI

June 25, 2003

Program Objective

- Develop a creep-resistant, coking-resistant oxidedispersion-strengthened (ODS) tubing for ethylene pyrolysis and steam methane reforming.
- Program seeks to:
 - Develop an ODS Alloy 803 with creep strength comparable to INCOLOY® MA956
 - Produce co-extruded ODS Alloy 803/INCOLOY® MA956 tubing
 - Demonstrate that this tubing is viable for industrial service
- Expected to permit an increase of 65°C in tube operating temperature or a doubling of time between decoking cycles.

Project Summary

Lead Organization: Institute of Materials Processing

Michigan Technological University

Houghton, MI 49931

Principal Investigator: Dr. Marvin G. McKimpson

mmckimp@mtu.edu

(906) 487-1825 (Phone)

(906) 487-2921(Fax)

Project Partner: Special Metals Corporation—Huntington WV

Providing In-kind labor, materials and testing

Gaylord Smith / (304) 526-5735 (phone)

Performance Period: 9/30/2001 – 9/29/2008 (Currently in FY 2)

Projected Funding: ~\$230K per year (\$1.6 Million total)

ODS Alloy 803 Goal

Tubing Concept

- MA 956 provides coking resistance on the tube ID and higher melting temperature material on the tube OD.
- ODS Alloy 803 provides greater fabricability, weldability and creep resistance in the tube core.

Ethylene Production

- Ethylene (C₂H₂) produced by pyrolysis of hydrocarbons
- Preheated hydrocarbons + steam injected into radiant coils and separated into ethylene and co-products.
- Maximum production of ethylene requires:
 - Low operating pressures (inlet pressures typically 370-640 kPa)
 - High tube wall temperatures (typically up to 1040-1120°C)
 - Low residence time (typically 0.15-0.5 s)
- Tube metallurgy currently limits reactor performance
- Similar technology used for methanol and hydrogen

Radiant Coil Materials Issues

Coils experience some of most severe operating conditions for metals in the process industries

- High temperature creep
- Coking
- Carburization
- Oxidation and Erosion
- Field Repairability/Replacement

Current and Competing Technologies

Current Technology

- Cast HP Mod-Nb (and others) + Sulfur additions
- Require periodic de-coking (~\$9 million/yr/facility) and replacement every 3-5 years (~\$1 million/replacement)
- Limited capability for producing small-diameter tubes

Competing Technologies

- Several coating technologies, including in-situ Mn-Cr
 Spinel (Nova Chemical) and deposited alumina coatings
- Alternate alloys, including intermetallics and higher-Cr materials (e.g. 35/45)
- Most focused more toward reducing coking than increasing maximum tube wall temperatures

Technology Benefits

- Higher-temperature, fouling-resistant materials are a cross-cutting need for many Industries of the Future
- Co-extruded tubes targeted for:
 - Ethylene pyrolysis (Chemical and Petroleum Industries)
 - Steam methane reforming
 - Methanol production (Chemical Industry)
 - Hydrogen (Agricultural Industry—Ammonia-based fertilizers)
- ODS Alloy 803 also potentially useful as a heatresistant material for fixtures, tooling and components (Process Heating, Glass, Steel & Metal Casting Industries)

Energy Usage for Ethylene Production

Domestic production of ethylene requires about 26 GJ/tonne (excluding feedstock). Note that 58% of this energy is consumed in the pyrolysis reactor.

(Data from E. Worrell et. al., *Energy Use and Energy Intensity in the U.S. Chemical Industry*, LBNL-44314, Lawrence Berkeley National Laboratory. April 2000. p. 16. Corrected for arithmetic error on Table 15)

Pyrolysis Furnace Tubes

- Co-extruded ODS tubes will allow higher tube wall temperatures and/or thinner tube walls:
 - Core and cladding have higher creep strength than current alloys
 - Cladding provides improved environmental resistance against coking and carburization
 - ODS Alloy 803 core provides improved ductility and weldability
- Greatest energy and economic benefits likely to accrue from shorter hydrocarbon residence times—and increased productivity—in reactor furnaces

Energy and Economic Savings

- Projected energy savings of up to 25% for ethylene production
 - Maximum tube wall temperature increase by up to 65°C
 - Reactor productivity increase by 35%
 - Energy savings due to:
 - Decreased coking
 - Increased conversion efficiency,
 - Improved heat transfer across thinner-walled tubes,
 - Higher reactor throughput
- Actual energy savings will depend on hydrocarbon feedstock, furnace design and operating parameters

Benefits of Co-extruded Tubes for Pyrolysis Furnaces (Schematic)

Composition of Selected Alloys

Alloy	Fe	Ni	Cr	Al	Ti	Si	С	Y ₂ O ₃	Other
Incoloy® MA956	74.0	-	20.0	4.5	0.5	-	0.05	0.5	-
Incoloy [®] Alloy 803	36.0	35.0	27.0	0.4	0.4	0.5	0.08	_	0.8Mn
ODS Alloy 803	36.0	37.0	26.0	0.3	0.3	0.8	0.08	0.2	0.8 Mn
Inconel [®] Alloy 754	1.0	78.0	20.0	0.3	0.5	ı	0.05	0.5	-
HK 40	53.0	20.0	25.0	-	-	1.8	0.45		-
HP Mod-Nb	37.0	35.0	25.0	-	-	1.8	0.45	-	1.0 Nb
HP Mod-Nb MA	37.0	35.0	25.0	ı	ı	1.8	0.45	-	1.0Nb, trace Ti, Zr and/or Rare Earths
35/45	16.0	45.0	35.0	1	1	1.8	0.45	-	1.5Nb, trace Ti, Zr and/or Rare Earths

Technical Activities

- Task 1—ODS Alloy 803 Development (Completed)
- Task 2—Co-Extrusion Process Development
 - Flow stress development (FY 2)
 - Extrusion simulation—DEFORM™ (FY 2 +)
 - Co-extrusion and recrystallization studies (FY 2-3)
 - Clad tubing characterization (metallographic, mechanical and environmental testing) (FY 2-4)
 - Commercialization assessment (FY 2-4)
- Task 3—Pilot-Scale Demonstration
 - Development of appropriate industrial partnerships (FY 2-4)
 - Applications engineering of test components (FY 5)
 - Pilot-scale testing and evaluation (FY 6-7)

Task 1 — Milling Process Development

- Optimization studies completed
 - Parameters evaluated:
 - Speed—70 to 300 rpm
 - Time—0 to 96 hrs
 - Powders—Blended & Prealloyed
 - Characterized by:
 - Morphology
 - Microhardness
 - Particle size

Effect of Total Milling Revolutions on the Microhardness of Milled Powders

Representative Powder Milling Data

Task 1 — Extrusion Studies

- Billet Fabrication
- Recrystallization (1300°C)
- Mechanical Properties (Recrystallized)
 - Yield strength—212-244
 MPa (30.7-35.4 ksi)
 - Tensile strength—552-585
 MPa (80-84.9 ksi)
 - Elongation—17.5-21.3%

ODS Alloy 803 microstructure after recrystallization

Current Activities

- Co-extrusion Development
- DEFORM™ Modeling
- Process Costing
- Additional Partners

Canned ODS Alloy 803 powder ready for direct powder co-extrusion

Flow Stress Data

As-extruded INCOLOY® MA956 and ODS Alloy 803

- Hot Compression
- 950, 1050 and 1150°C
- 0.04, 1 and 25/s strain rate

Flow Stress (MPa) of INCOLOY® MA956 and ODS Alloy 803 at Strain=0.6

Finite Element Simulation

- DEFORM[™] is being used to model direct powder co-extrusion of the clad tubing
- Work includes:
 - Compile needed material/process input data
 - Verify initial clad tubing simulations
 - Perform sensitivity analyses
 - Use DEFORM™ output to asses:
 - Microstructure / deformation correlations
 - Process sensitivity
 - Process window

Process Costing for ODS Tubing

Process Flow Diagram

Raw Material

Ni (37 wt%) Fe (36 wt%) Cr (27wt%) Others (1 wt%)

Direct Powder Extrusion

V

Ship

Initial Assumptions

- Initial production volume: 455 tonnes/year
- Tube dimensions:
 63.5mm OD x 50.8mm ID x 12.2m Long
- Extrusion force— <53 MN
- Avg. raw material cost: \$12.33 per kilogram (Includes MA956)
- Number of Ball Mills—4
- Required annealing time—1 hr

Other processes include: screening, canning, machining, pickling and heat treatment.

Future Activities—Next 12 Months

- Production/assessment of co-extruded tubes
- Completion of DEFORM™ modeling
- Mechanical and environmental testing of tubing
 - Ambient and elevated temperature tensile
 - Creep rupture (Special Metals)
 - Oxidation and carburization (Special Metals)
 - Coking (Planning for future tests)
- Completion of process costing study
- Strengthening of industrial interactions

Mechanical Alloying

"Oxide Dispersion Strengthened Alloys", Special Metals Corp.

1-S Data Collection System

ODS Alloy 803 Powder Development

Attrition milled ODS Alloy 803 powder

24 hrs

72 hrs

ODS Alloy 803 ready to be HIP'ped

Project Schedule

					1				1																			
	Year 1		Year 2			Year 3					Year 4			Year 5			5	Year 6				Year 7						
Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q 4
1. ODS Alloy 803 Development																												
Atomize Alloy 803 Powder																												
Milling Process Development																												
Extrusion and Recrystallization																												
Characterization																												
2. Co-extrusion Process Development																												
Flow Stress Data Development																												
Extrusion Simulation																												
Co-extrusion Process Development																												
Extrusion and Recrystallization																												
Clad Tubing Characterization																												
3. Pilot-Scale Demonstration Program																												
4. Reporting																												

Anticipated Spending Plan

Requested Funds	Task 1	Task 2	Task 3	Task 4	TOTAL
Year 1	133,527	40,700	0	30,729	204,956
Year 2	45,077	158,060	0	32,141	235,278
Year 3	0	207,416	0	33,628	241,044
Year 4	0	213,241	0	35,190	248,431
Year 5	0	0	188,379	30,666	219,045
Year 6	0	0	196,664	32,015	228,679
Year 7	0	0	205,358	33,430	238,788
TOTAL	178,604	619,417	590,401	227,799	1,616,221

